Sunday, October 29, 2017

Multi-messenger Events such as GW170807 May Falsify Gravitational Waves

Contrary to what I first thought, a multi-messenger event such as GW170817 does not confirm the predictions of existence of gravitational waves; it merely supports it. In fact, the observed electromagnetic counterpart may very well refute them (I propose a simple experiment at the end of this post that would do just that).

As you know, QGD predicts that gravity is not fundamental but a composite effect of the only two fundamental forces it predicts exist. QGD’s description of gravity follows naturally from a minimal axiom set necessary to describe the evolution of dynamics systems (see New Equation for Gravity as Derived from QGD’s Axiom Set). It describes correctly observations, reproduces the predictions of special and general relativity (see Special and General Relativity Axiomatic Derivations) yet allows for new predictions that distinguish it from other theories. QGD excludes all possibility of gravitational-electromagnetic multi-messenger events, that is, the possibility of simultaneous detecting a gravitational signal and electromagnetic signals from the same event. In the case of GW170817, if the estimation of the distance of the source is correct, QGD predicts that the electromagnetic counterparts of the binary star merger would arrive 130 million years after the gravitational signal. So GW170817, having electromagnetic counterpart in the form of a gamma ray bursts GRB 170817A must falsify QGD’s prediction, right?

That is what I thought, but then I realized that I hadn’t considered that though the GW170817 signal may be real, it may not be gravitational in nature. Most importantly, I realized that QGD offers an alternative explanation as to the nature of the signal that follows naturally from the theory without any modifications or addition whatsoever. QGD being rigorously derived from its axiom set forbids modifications or ad hoc explanations. In other words, it cannot be changed to fit contradictory observations.

Yes, the observed electromagnetic counterpart to GW170817 supports the existence of gravitational waves but there is important distinction between support for a prediction and its confirmation. Support leaves one or several significant questions unanswered; questions about the certainty of the nature of what was observed. Confirmation on the other hand leaves minor questions without questioning the nature of the observed phenomenon.

The only thing that the electromagnetic counterpart confirms is that the GW170817 signal travelled at the speed of light. The assumption that it must be gravitational at the exclusion all other explanation is the result of the dominant theoretical bias. However, as I explained in my earlier post, the nature of GW170817 may be electromagnetic rather than gravitational (see here for explanation). I also have proposed a simple experiment that could falsify QGD’s prediction that GW170817 and all previous detections by LIGO are electromagnetic and caused by intense polarization and modulation of the preonic field (if you are not familiar with QGD, see here for explanation). If QGD is correct, signals detected by LIGO-VIRGO detectors would be exactly mirrored by fluctuations in the magnetic moment of a reference magnet. If that were the case, then the prediction of the existence of gravitational waves would be falsified.

No comments:

Post a Comment

Particular Interpretation of Double-Slit Experiments

  Following the failure of classical physics theories to explain the interference patterns observed in double slit experiments and other lig...